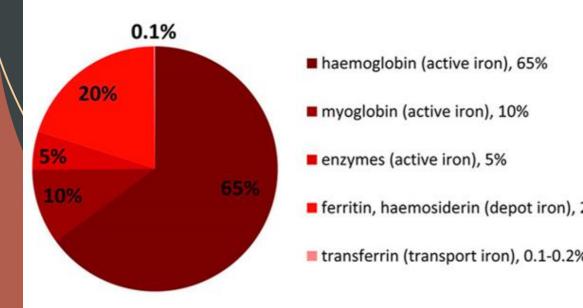


Adapt and Thrive Iron deficiency

Dr Claire Badenhorst

School of Sport, Exercise and Nutrition

Massey Univeristy


Our discussion points for the day

- Understanding iron status: what is normal, too little and too much
- Recognizing the symptoms of Iron Deficiency
- Identify the progressive stages of Iron depletion
- Understand how our body regulates Iron
- Evidence based treatment strategies

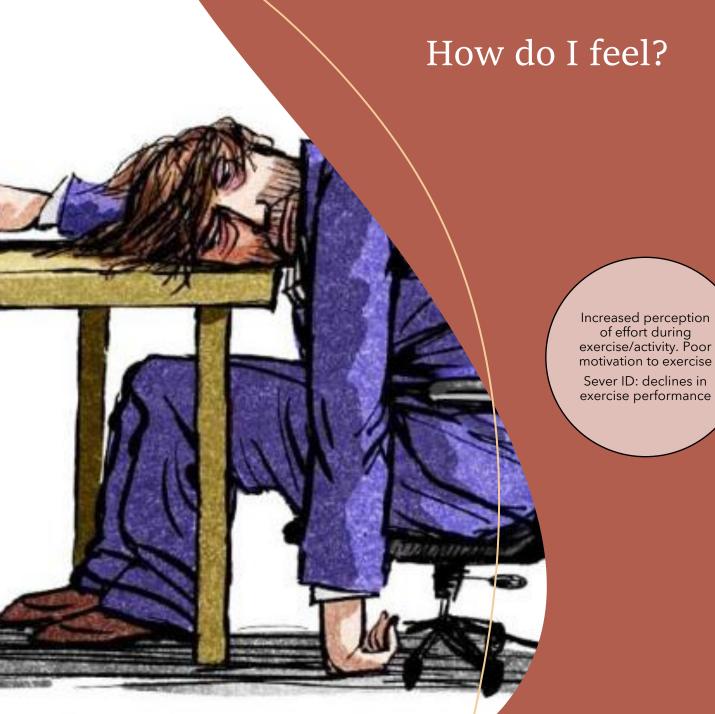
Perhaps too much is as bad as too little

- Fundamental mineral for normal functioning
- Human body ~3-5 mg
 - Oxygen delivery and storage
 - Hemoglobin (Hb) + Myoglobin (Mb)
 - Oxidative production of energy
 - Components of electron transport chain in mitochondria
 - Release ATP
 - Enzymes (~1%):
 - Synthesis of steroid hormones & bile acids
 - Signalling by some neurotransmitters
 - DNA production
 - Immune function
 - Influence cell mediated immunity

Sitting in the healthy mid range zone

Iron deficiency

Normal Iron levels


Serum Ferritin
<30-35 ug/L

Sorum Ferritin
<30-300 ug/L

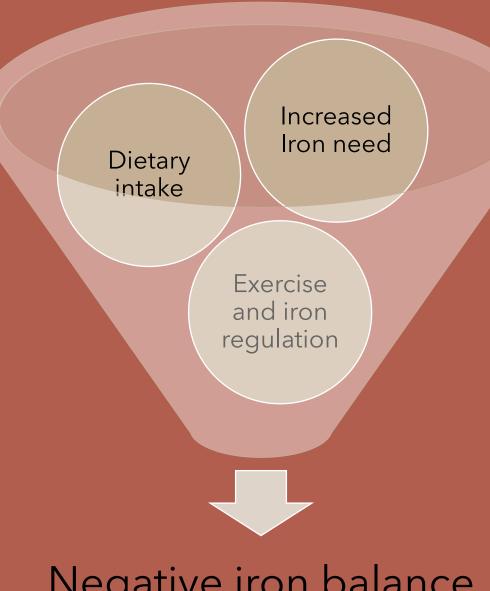
Iron
overload/Excess

Stages of Iron depletion

	Stage 3: Iron deficiency Anaemia	Stage 2: Iron Deficiency	Stage 1: Iron depletion	Normal Ranges for Iron	Iron Overload
Serum Ferritin (Iron stores)	<12ug/L	12-20ug/L	<35/30 ug/L	35-300ug/L	>300ug/L
Haemoglobin (Hb)	F<120 M<140	F>120 M>140	F>120 M>140	F>120 M>140	F>120 M>140
Transferrin Saturation (%)	<16%	>16%	16-20%	35±15%	>60%

Fatigue/Lethargy

Increased perception of effort during exercise/activity. Poor motivation to exercise Sever ID: declines in


Symptoms

Poor concentration/ declines in work productivity, poor mood, increased irritability

Poor immune function

Challenges to our iron status

Negative iron balance

Increased Iron need

Growth and Development:

• Adolescences (Males and Females)

• Children

Menstrual Cycle:

- Females starting their cycle
- Premenopausal females
- Perimenopausal females

Dietary intake

- Adequate dietary iron intake
 - Meeting RDA's on iron for all genders and age groups
- Changes in dietary pattern
 - Veganism/vegetarian growth in popularity

Current NZ Iron intake recommendations

Recommended Dietary Allowance (RDAs) for Iron in New Zealand

Age	Female	Male	EAR- estimated average intake
1-13 years	~8	~6mg	
14-18 years	15 mg	11 mg	~8mg
19- 50 years	18 mg	8 mg	6-8mg
50 + years	8 r	5-6mg	
Athletes	~17. Females ru 23		

Haem vs Non-Haem Iron foods

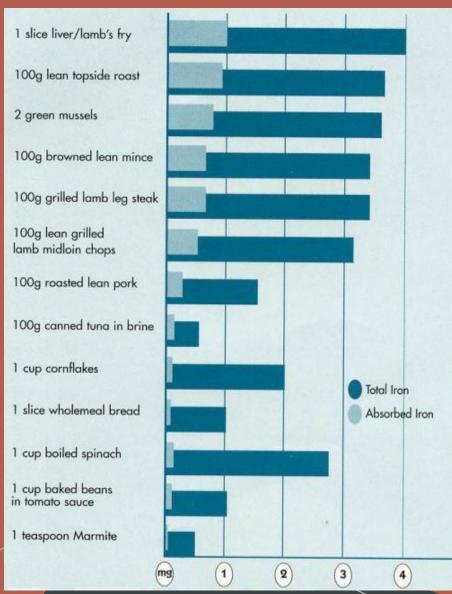
Haem iron

Meat, fish & poultry 25% absorbed constant

Non-haem iron

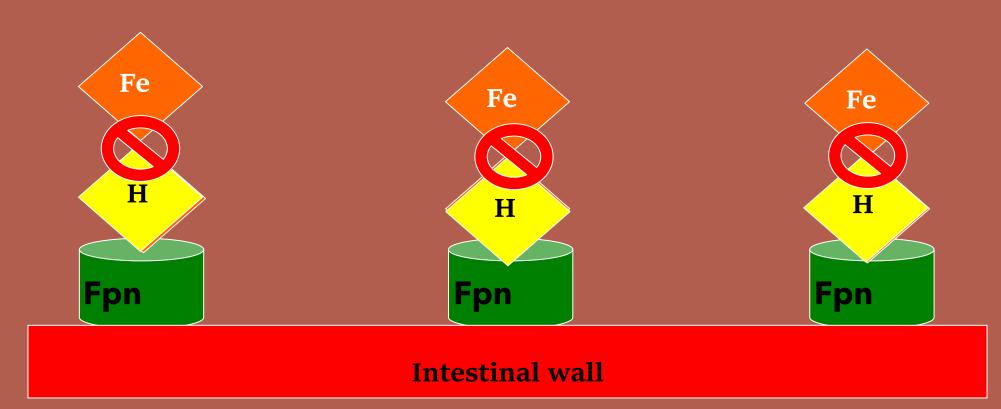
Cereal, pulses, legumes, fruit & vegetables

Absorption variable (2-20%)



Absorption example:

For a women to get half her daily iron needs (~9 mg iron) she either needs to eat 140 g of steak or 3.3 kg of spinach

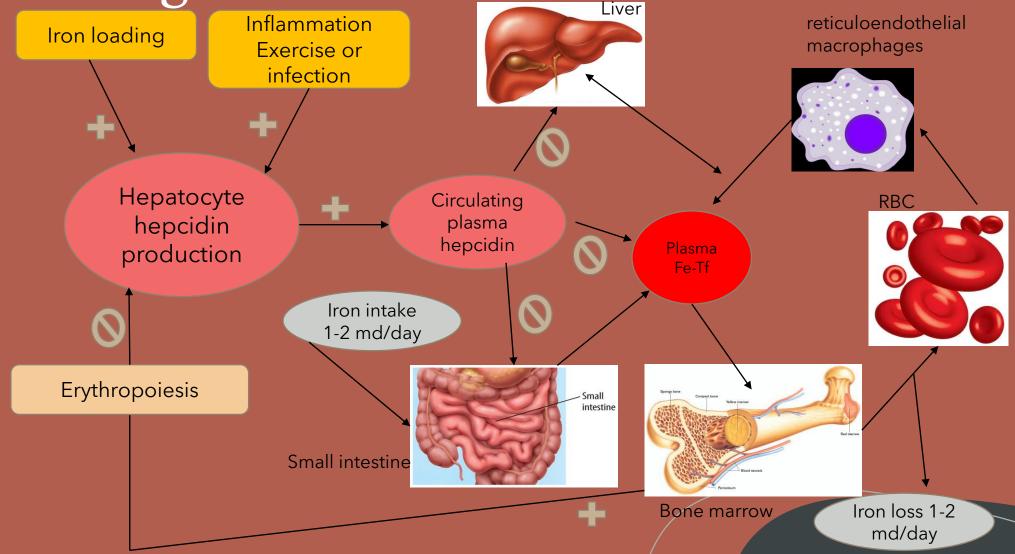


Exercise: accelerates iron loss

- Exercise induced mechanism:
 - Sweating
 - Haematuria
 - Haemolysis
 - GI bleeding
- Exercise induced increases in the iron regulatory hormone hepcidin

Hepcidin: Iron commander

Homeostatic regulation in the body via Hepcidin


Iron regulatory hormone

Degrades ferroportin export channels:

Duodenum
Macrophages/reticuloendothelial system
Liver/Hepatocytes
Adipocytes

(Nemeth et al., 2004)

Iron regulation in the body: an intricate balancing act

Factors that influence hepcidin everyday

Current iron status

- Blunted if iron deficient
- HFE: genetically low levels

Dietary iron intake and time of day

- If healthy iron levels will increase to prevent XS iron absorption
- Lowest in the morning, increases throughout the day

Exercise and Inflammation

- Increases with exercise ~3-6 h post exercise
- Increases during illness to prevent infection development

Preventative and Treatment strategies

1

Dietary iron

Initial/conservative approach Conducted by accredited dietician

- 1) Full dietary assessment
- Provision eating plan to increase daily iron intake
- Address bioavailability (haem vs non haem sources)
- 4) Assess presence of inhibitor vs enhancers

2

Iron supplements

Oral or liquid
In ferrous form (fumarate,
gluconate, sulphate)
Ferric form → GI disturbance
GI-discomfort: iron
polymerase prep or enteric
table coating

Every 2nd day: increase fractional absorption of iron from dose 8-12 weeks → 40-80% increase ferritin

3

Parental iron

Intramuscular injections to IV iron

1-42 days → 200-400% increase ferritin
High speed of restoration and minimal GI upset
Used sever cases
Decision made sports
physician and in line anti doping agencies of sport

Tips to increase iron absorption

- Meat, fish or chicken 3 4 serves / week
- Plant foods with high iron contents legumes, green leafy vegetables, iron fortified cereals & bread
- Vitamin C with meals
- Limit inhibitors at meal times, or give it 1 hour
 - Tea & coffee
 - Excessive unprocessed bran intake
 - Calcium?
- Morning iron rich foods or supplement ingestion
- Morning supplement within 30 min after completing exercise session
- Combined approach

Questions and comments for discussion

Contact: Dr Claire Badenhorst <u>C.Badenhorst@massey.ac.nz</u>

